From 1 - 10 / 115
  • The photography was captured to be used for general Council mapping purposes, asset management and urban planning. The orthorectified image includes 3 visible bands and tiled into 0.2 km tiles. It is available in both TIFF and ECW compress format.

  • Projection data is described in the gridcode column of the attribute table. This number is 1000 times the actual value (retained in this form to capture significant figures through map processing). For example, "Gridcode -23599" equates to -24% (rainfall) and "Gridcode 1986" equates to 2.0 degrees Celsius (temperature). The results are from 23 climate models that were available for the IPCC Fourth Assessment Report (2007). It is assumed that that the model results give a representation of the real world response to a specific emissions scenario. The IPCC (2007) estimates of global warming are relative to the period 1980-1999. For convenience, the baseline is often called 1990. Projections are given for 2030 and 2070 but, of course, individual years can vary markedly within any climate period, so the values can be taken as representative of the decade around the single year stated, i.e. projections for 2030 are representative of 2026-2035. Natural variability (independent of greenhouse gas forcing) can cause decadal means to vary and estimates of this effect are included in the estimates of uncertainties. The projections comprise a central estimate and a range of uncertainty. The central estimate is the median – or 50th percentile - of the model results, while the uncertainty range is based on two extreme values – the 10th and 90th percentiles. 10% of values fall below the 10th percentile and 10% of values lie above the 90th percentile. Greater emphasis is given to projections from models that best simulate the present climate. The weightings are based on statistical measures of how well each model can simulate the 1975-2004 average patterns of rainfall, temperature, and sea level pressure over Australia. Subregions of Victoria are indicated. Victoria has an integrated catchment management system established under the Catchment and Land Protection Act 1994 (the CaLP Act). Under the CaLP Act, Victoria is divided into ten catchment regions, with a Catchment Management Authority (CMA) established for each region. (See: http://www.water.vic.gov.au/governance/catchment_management_authorities)

  • The purpose of collecting historic air photos is to detect and measure any changes (long term progressive or cyclic) in shorelines over the last 60 years. The sorts of shorelines that may have shown significant change over that sort of time frame include sandy beach-dune shores, scarped 'soft-rock' shores, muddy mangrove shores, and others. The photography will be used to identify an erosion scarp or a seawards vegetation limit (which may move seawards or landwards as a shore erodes or accretes).

  • This product is a fully orthorectified true colour visible imagery, tiled into 1km tiles and captured during summer. The imagery is available in both TIFF and ECW compress format.

  • The land systems of Victoria spatial data layer (LSYS250) was re-attributed by DPI Bendigo based on McKenzie's Soil Atlas of Australia (CSIRO, 2003). Soil was classified on the Northcote scheme. This layer was converted to a grid format based on the VICMAP_ELEVATION_DTM_20M layer.

  • River condition in Victoria is assessed every 5 years using the Index of Stream Condition (ISC). The Department of Environment and Primary Industries (DEPI) has developed a methodology to assess components of the ISC using remote sensing techniques, specifically LIDAR and aerial photography. As such, a State Wide mapping project was undertaken in 2009-12 to accurately map the riparian vegetation and physical form components (metrics) of the ISC using LiDAR and imagery data. Remote sensing data collected includes 15cm true colour infra-red aerial photography and four return multi-pulse LiDAR data. These were used to derive a range of standard and non-standard physical form and riparian vegetation raster datasets. The project was managed on a CMA by CMA basis with all source and derived datasets being organised this way. In addition to the remote sensing and derived raster products, a set of vector products and tabular data has also been generated. These further represent and define the physical form and riparian characteristics of the ISC rivers and contain the ISC scoring data. Keywords: River, ISC, Victoria, LiDAR, Riparian, Physical Form, Vegetation, Elevation

  • Projection data is described in the gridcode column of the attribute table. This number is 1000 times the actual value (retained in this form to capture significant figures through map processing). For example, "Gridcode -23599" equates to -24% (rainfall) and "Gridcode 1986" equates to 2.0 degrees Celsius (temperature). The results are from 23 climate models that were available for the IPCC Fourth Assessment Report (2007). It is assumed that that the model results give a representation of the real world response to a specific emissions scenario. The IPCC (2007) estimates of global warming are relative to the period 1980-1999. For convenience, the baseline is often called 1990. Projections are given for 2030 and 2070 but, of course, individual years can vary markedly within any climate period, so the values can be taken as representative of the decade around the single year stated, i.e. projections for 2030 are representative of 2026-2035. Natural variability (independent of greenhouse gas forcing) can cause decadal means to vary and estimates of this effect are included in the estimates of uncertainties. The projections comprise a central estimate and a range of uncertainty. The central estimate is the median – or 50th percentile - of the model results, while the uncertainty range is based on two extreme values – the 10th and 90th percentiles. 10% of values fall below the 10th percentile and 10% of values lie above the 90th percentile. Greater emphasis is given to projections from models that best simulate the present climate. The weightings are based on statistical measures of how well each model can simulate the 1975-2004 average patterns of rainfall, temperature, and sea level pressure over Australia. Subregions of Victoria are indicated. Victoria has an integrated catchment management system established under the Catchment and Land Protection Act 1994 (the CaLP Act). Under the CaLP Act, Victoria is divided into ten catchment regions, with a Catchment Management Authority (CMA) established for each region. (See: http://www.water.vic.gov.au/governance/catchment_management_authorities)

  • The imagery contains two products. The fully orthorectified 35cm true colour visible (RGB) imagery was captured over the Surf Coast Shire. The Georeferenced (reduced accuracy) image includes 3 visible bands (RGB) and one separate IR band and covers the Surf Coast Shire/ Otways area. Both products are tiled into 5 km tiles and available in both TIFF and ECW compress format.

  • 1:100,000 Landuse rasterised to 20m based on VICMAP_ELEVATION_DTM_20M. For more details see the Metadata for LANDUSE100.